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Preface

The greatest possibilities of visual display lie in vividness and inescapability of the
intended message. A visual display can stop your mental flow in its tracks and make
you think. A visual display can force you to notice what you never expected to see,

John W. Tukey (1990)

Data analysis and graphics

This book stems from the conviction that data analysis and statistical graphics should go hand-
in-hand in the process of understanding and communicating statistical data. Statistical summaries
compress a data set into a few numbers, the result of an hypothesis test, or coefficients in a fitted
statistical model, while graphical methods help us to explore patterns and trends, see the unex-
pected, identify problems in an analysis, and communicate results and conclusions in principled
and effective ways.

This interplay between analysis and visualization has long been a part of statistical practice
for quantitarive data. Indeed, the origin of correlation, regression, and linear models (regression,
ANOVA) can arguably be traced to Francis Galton’s (1886) visual insight from a scatterplot of
heights of children and their parents on which he overlaid smoothed contour curves of roughly
equal bivariate frequencies and lines for the means of Y | X and X | Y (described in Friendly and
Denis (2005), Friendly et al. (2013)).

The analysis of discrete data is a much more recent arrival, beginning in the 1960s and giving
rise to a few seminal books in the 1970s (Bishop et al., 1975, Haberman. 1974, Goodman, 1978,
Fienberg. 1980). Agresti (2013, Chapter 17) presents a brief historical overview of the development
of these methods from their early roots around the beginning of the 20" century.

Yet curiously, associated graphical methods for categorical data were much slower to develop.
This began to change as it was recognized that counts, frequencies, and discrete variables required
different schemes for mapping numbers into useful visual representations (Friendly. 1995, 1997),
some auite novel. The special nature of discrete variables and freauencv data vis-a-vis statistical



graphics is now more widely accepted. and many of these new graphical methods (e.g.. mosaic
displays, fourfold plots, diagnostic plots for generalized linear models) have become, if not main-
stream, then at least more widely used in research, teaching, and communication.

Much of what had been developed through the 1990s for graphical methods for discrete data was

xiii
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described in the book Visualizing Categorical Data (Friendly, 2000) and was implemented in SAS®
software. Since that time, there has been considerable growth in both statistical methods for the
analysis of categorical data (e.g., generalized linear models, zero-inflation models., mixed models for
hierarchical and longitudinal data with discrete outcomes), along with some new graphical methods
for visualizing and interpreting the results (3D mosaic plots, effect plots, diagnostic plots. etc.).
The bulk of these developments have been implemented in R, and the time is right for an in-depth
treatment of modern graphical methods for the analysis of categorical data. to which you are now
invited.

Goals

This book aims to provide an applied, practically oriented treatment of modern methods for the anal-
ysis of categorical data—discrete response data and frequency data—with a main focus on graphical
methods for exploring data, spotting unusual features, visualizing fitted models, and presenting or
explaining results.

We describe the necessary statistical theory (sometimes in abbreviated form) and illustrate the
practical application of these techniques to a large number of substantive problems: how to organize
the data. conduct an analysis, produce informative graphs, and understand what they have to say
about the data at hand.

Overview and organization of this book

This book is divided into three parts. Part I, Chapters 1-3, contains introductory material on graph-
ical methods for discrete data, basic R skills needed for the book, and methods for fitting and
visualizing one-way discrete distributions.

Part 11, Chapters 4-6, is concerned largely with simple, traditional non-parametric tests and
exploratory methods for visualizing patterns of association in two-way and larger frequency tables.
Some of the discussion here introduces ideas and notation for loglinear models that are treated more
generally in Part TI1

Part ITI, Chapters 7-11, discusses model-based methods for the analysis of discrete data. These
arc all examples of generalized lincar models. However, for our purposes, it has proved more
convenient to develop this topic from the specific cases (logistic regression, loglinear models) to the
general rather than the reverse.

Chapter 1: Introduction. Caiegorical data require different statistical and graphical methods than
commonly used for quantitative data. This chapter outlines the basic orientation of the book
toward visualization methods and some key distinctions regarding the analysis and visualization
of categorical data.

Chapter 2: Working with Categorical Data. Categorical data can be represented in various forms:
case form, frequency form, and table form. This chapter describes and illustrates the skills and
techniques in R needed to input, create, and manipulate R data objects to represent categorical
data, and convert these from one form to another for the purposes of statistical analysis and
visualization, which are the subject of the remainder of the book.

Chapter 3: Fitting and Graphing Discrete Distributions. Understanding and visualizing discrete
data distributions provides a building block for model-based methods discussed in Part 111
This chapter introduces the well-known discrete distributions—the binomial, Poisson, negative-
binomial, and others—in the simplest case of a one-way frequency table.
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Chapter 4: Two-Way Contingency Tables. The analysis of two-way frequency tables concerns the
association between two variables. A variety of specialized graphical displays help to visualize
the pattern of association, using area of some region to represent the frequency in a cell. Some
of these methods are focused on visualizing an odds ratio (for 2 x 2 tables). or the general pattern
of association. or the agreement between row and column categories in square tables.

Chapter 5: Mosaic Displays for n-Way Tables. This chapter introduces mosaic displays, designed
to help to visualize the pattern of associations among variables in two-way and larger tables.
Extensions of this technique can reveal partial associations and marginal associations, and shed
light on the structure of loglinear models themselves.

Chapter 6: Correspondence Analysis. Correspondence analysis provides visualizations of associ-
ations in a two-way contingency table in a small number of dimensions. Multiple correspon-
dence analysis extends this technique to n-way tables, Other graphical methods, including mo-
saic matrices and biplots, provide complementary views of loglinear models for two-way and
n-way contingency tables.

Chapter 7: Logistic Regression Models. This chapter introduces the modeling framework for cat-
egorical data in the simple situation where we have a categorical response variable, often binary,
and one or more explanatory variables. A fitted model provides both statistical inference and
prediction, accompanied by measures of uncertainty. Data visualization methods for discrete
response data must often rely on smoothing techniques, including both direct. non-parametric
smoothing and the implicit smoothing that results from a fitted parametric model. Diagnostic
plots help us to detect influential observations that may distort our results.

Chapter 8: Models for Polytomous Responses. This chapter generalizes logistic regression mod-
els for a binary response to handle a multi-category (polytomous) response. Different models
are available depending on whether the response categories are nominal or ordinal. Visualiza-
tion methods for such models are mostly straightforward extensions of those used for binary
responses presented in Chapter 7.

Chapter 9: Loglinear and Logit Models for Contingency Tables. This chapter extends the model-
building approach to loglinear and logit models. These comprise another special case of gen-
cralized lincar models designed for contingency tables of frequencies. They are most easily
interpreted through visualizations, including mosaic displays and effect plots of associated logit
models.

Chapter 10: Extending Loglinear Models. 1.oglinear models have special forms to represent ad-
ditional structure in the variables in contingency tables. Models for ordinal factors allow a more
parsimonious description of associations. Models for square tables allow a wide range of spe-
cific models for the relationship between variables with the same categories. Another extended
class of models arise when there are two or more response variables.

Chapter 11: Generalized Linear Models. Generalized linear models extend the familiar linear mod-
els of regression and ANOVA to include counted data, frequencies, and other data for which the
assumptions of independent, normal errors are not reasonable. We rely on the analogies between
ordinary and generalized linear models (GLMs) to develop visualization methods to explore the
data, display the fitted relationships, and check model assumptions. The main focus of this
chapter is on models for count data.

Audience

This book has been written to appeal to two broad audiences wishing to learn to apply methods for
discrete data analysis:
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* Advanced undergraduate and graduate students in the social and health sciences, epidemiology,
economics, business, and (bio)statistics



* Substantive researchers, methodologists, and consultants 1n various disciplines wanting to be
able to use these methods with their own data and analyses.

It assumes the reader has a basic understanding of statistical concepts at least at an intermediate
nnderoradnate level includine resression and analvsis of variance (for examnle. at the level of Neter
etal. (1990) or Mendenhall and Sincich (2003)). It is less technically demanding than other modern
tevte roverine cateonrical data analveic at a oradnate laval cwh ac Aorecti (Y Carconrieal
Data Analysis, Powers and Xie (2008), Statistical Methods for Categorical Data Analysis, and
Christensen (1997), Log-Linear Models and Logistic Regression. Nevertheless, there are some
topics that are a bit more advanced or technical, and these are marked as * or ™ sections.

As well, there are a number of mathematical or statistical topics that we use in passing, but do
not describe in these pages (some matrix notation, basic probability theory, maximum likelihood
estimation, etc.). Most of these are described in Fox (2015), which is available online and serves
well as a supplement to this book.

In addition, it is not possible to include all details of using R effectively for data analysis. It is
assumed that the reader has at least basic knowledge of the R language and environment, includ-
ing interacting with the R console (RGui for Windows, R.app for Mac OS X) or other graphical
user interface (e.g., RStudio), using R functions in packages, getting help for these from R, etc.
One introductory chapter (Chapter 2) is devoted to covering the particular topics most important to
categorical data analysis, beyond such basic skills needed in the book.

Textbook use

This book is most directly suitable for a one-semester applied advanced undergraduate or grad-
uate course on categorical data analysis with a strong emphasis on the use of graphical meth-
ods to understand and explain data and results of analysis. A detailed outline of such a course,
together with lecture notes and assignments, is available at the first author’s web page, http:
//euclid.psych.yorku.ca/www/psy6136/, using this book as the main text. This course
also uses Agresti (2007), An Introduction to Caregorical Dara Analysis for additional readings.

For instructors teaching a more traditional course using one of the books mentioned above as the
main text, this book would be a welcome supplement, because almost all other texts treat graphical
methods only perfunctorily. if at all. A few of these contain a brief appendix mentioning software,
or have a related web site with some data sets and software examples. Moreover, none actually
describe how to do these analyses and graphics with R.

Features

* Provides an accessible introduction to the major methods of categorical data analysis for data
exploration, statistical testing, and statistical models.

* The emphasis throughout is on compulting, visualizing, understanding, and communicating the
results of these analyses.

* As opposed to more theoretical books, the goal here is to help the reader to translate theory into
practical application, by providing skills and software tools for carrying out these methods.

* Includes many examples using real data, often treated from several perspectives.

* The book is supported directly by R packages ved (Meyer et al., 2015) and vedExtra (Friendly,
2015), along with numerous other R packages.

« All materials (data sets, R code) will be available online on the web site for the book,
http://datavis.ca/books/DDAR.
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* Each chapter contains a collection of lab exercises, which work through applications of some
of the methods presented in that chapter. This makes the book more suitable for both self-study
and classroom use.
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Strategies
for analysis

Introduction

Categorical data consist of variables whose values comprise a set of discrete cate-
gories. Such data require different statistical and graphical methods than commonly used
for quantitative data. The focus of this book is on visualization techniques and graphical
methods designed to reveal patterns of relationships among categorical variables. This
chapter outlines the basic orientation of the book and some key distinctions regarding the
analysis and visualization of categorical data.

1.1 Data visualization and categorical data: Overview

Graphs carry the message home. A universal language, graphs convey information
directly 1o the mind. Without complexity there is imaged to the eye a magnitude (o be
remembered. Words have wings, but graphs interpret. Graphs are pure quantity,
stripped of verbal sham. reduced to dimension, vivid, unescapable.

Henry D. Hubbard, in Foreword to Brinton (1939), Graphic Presentation

“Data visualization™ can mean many things. from popular press infographics, to maps of voter
turnout or party choice. Here we use this term in the narrower context of statistical analysis. As
such, we refer to an approach to data analysis that focuses on insightful graphical display in the
service of both understanding our data and communicating our results to others.

We may display the raw data, some summary statistics, or some indicators of the quality or
adequacy of a fited model. The word “insightful” suggests that the goal is (hopefully) to reveal
some aspects of the data that might not be perceived, appreciated, or absorbed by other means. As
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in the quote from Keats, the overall aims include both beauty and truth, though each of these are



only as perceived by the beholder.

Methods for visnalizing quantitative data have a long history and are now widely used in both
data analysis and in data presentation, and in both popular and scientific media. Graphical methods
for categorical data, however, have only a more recent history, and are consequently not as widely
used. The goal of this book is to show concretely how data visualization may be usefully applied to
categorical data.

“Categorical” means different things in different contexts. We introduce the topic in Section 1.2
with some examples illustrating (a) types of categorical variables: binary, nominal, and ordinal. (b)
data in case form vs. frequency form, (c¢) frequency data vs. count data, (d) univariate, bivariate, and
multivariate data, and (e) the distinction between explanatory and response variables.

Statistical methods for the analysis of categorical data also fall into two quite different cate-
gories, described and illustrated in Section 1.3: (a) the simple randomization-based methods typified
by the classical Pearson chi-squared (y?) test. Fisher's exact test. and Cochran-Mantel-Haenszel
tests, and (b) the model-based methods represented by logistic regression, loglinear, and generalized
linear models. In this book, Chapters 3—6 are mostly related to the randomization-based methods;
Chapters 7-9 illustrate the model-based methods.

In Section 1.4 we describe some important similarities and differences between categorical data
and quantitative data, and discuss the implications of these differences for visualization techniques.
Section 1.4.5 outlines a strategy of data analysis focused on visualization,

In a few cases we show R code or results as illustrations here, but the fuller discussion of using
R for categorical data analysis is postponed to Chapter 2.

1.2 What is categorical data?

A categorical variable is one for which the possible measured or assigned values consist of a dis-
crete set of categories, which may be ordered or unordered. Some typical examples are:

¢ Gender, with categories “Male,” “Female.”

« Marital status, with categories “Never married,” “Married,” “Separated,” “Divorced,”
“Widowed.”

* Fielding position (in baseball), with categories “Pitcher,” “Catcher,” “1st base,” “2nd
base,” ..., “Left field.”

* Side effects (in a pharmacological study), with categories “None,” “Skin rash,” “Sleep
disorder,” “Anxiety,” . . ..

= Political attitude, with categories “Left,” “Center,” “Right.”

e Party preference (inCanada), with categorics “NDP,” “Liberal,” “Conservative,” “Green.”

¢ Treatment outcome,with categories “noimprovement.” “some improvement,” or “marked
improvement.”

* Age, with categories “0-9." “10-19.” “20-29." “30-39." . ...

* Number of children, withcategories0,1,2,....

As these examples suggest, categorical variables differ in the number of categories: we often
distinguish binary variables (or dichotomous variables) such as Gender from those with more
than two categories (called polytomous variables). For example, Table 1.1 gives data on 4, 526
applicants to graduate departments at the University of California at Berkeley in 1973, classified by
two binary variables, gender and admission status.

Some categorical variables (Political attitude, Treatment ocutcome) may have
ordered categories (and are called ordinal variables), while others (nominal variables) like Marital
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Table 1.1: Admissions to Berkeley graduate programs

Admitted Rejected | Total
Males 1198 1493 | 2691
Females 557 1278 | 1835
Total 1755 2771 | 4526




Table 1.2: Arthritis treatment data

Improvement
Treatment Sex None Some Marked | Total
Aclive Female 6 5 16 27
Male 7 2 5 14
Placebo Female 19 7 6 32
Male 10 0 1 11
Total 42 14 28 84

status have unordered categories.! For example, Table 1.2 shows a 2 x 2 x 3 table of ordered out-
comes (“none.” “some,” or “marked” improvement) to an active treatment for rheumatoid arthritis
compared to a placebo for men and women.

Finally, such variables differ in the fineness or level to which some underlying observation has
been categorized for a particular purpose. From one point of view, all data may be considered
categorical because the precision of measurement is necessarily finite, or an inherently continuous
variable may be recorded only to limited precision.

But this view is not helpful for the applied researcher because it neglects the phrase “for a
particular purpose.” Age, for example. might be treated as a quantitative variable in a study of
native language vocabulary. or as an ordered categorical variable with decade groups (0-10, 11-20,
20-30, .. .) in terms of the efficacy or side-effects of treatment for depression, or even as a binary
variable (“child” vs. “adult™) in an analysis of survival following an epidemic or natural disaster. In
the analysis of data using categorical methods, continuous variables are often recoded into ordered
categories with a small set of categories for some purpose.”

1.2.1 Case form vs. frequency form

In many circumstances, data is recorded on each individual or experimental unit. Data in this form
is called case data, or data in case form. The data in Table 1.2, for example, were derived from the
individual data listed in the data set Arthritis from the ved package. The following lines show
the first five of N = 84 cases in the Arthritis data,

ID Treatment Sex Age Improved
1 57 Treated Male 27 Some

! An ordinal variable may be defined as one whose categories are unambiguousily ordered along a single underlying dimen-
sion. Both marital status and fielding position may be weakly ordered, but not on a single dimension, and not unambiguously.

*This may be a waste of information available in the original variable, and should be done for substantive reasons,
not mere convenience. For example, some researchers unfamiliar with regression methods often perform a “median-split”
on quantitative predictors so they can use ANOVA methods. Doing this precludes the possibility of determining if those
variables have nonlinear relations with the outcome while also decreasing statistical power.
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2 46 Treated Male 29 None
3 77 Treated Male 30 None

4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked

Whether or not the data variables, and the questions we ask, call for categorical or quantitative
data analysis, when the data are in case form, we can always trace any observation back to its
individual identifier or data record (for example, if the case with 1D equal to 57 turns out to be
unusual or noteworthy),

Data in frequency form has already been tabulated, by counting over the categories of the table
variables. The same data shown as a table in Table 1.2 appear in frequency form as shown below.

Treatment Sex Improved Freq
1 Placebo Female None 19
2 Treated Female None 6
3 FPlacebo Male None 10
4 Treated Male None 7
5 Placebo Female Some 7
6 Treated Female Some 5



7 Placebo Male Some
8 Treated Male Some
9 Placebo Female Marked

10 Treated Female Marked 1
11 Placebo Male Marked
12 Treated Male Marked

=N O

Data in frequency form may be analyzed by methods for quantitative data if there is a quan-
titative response variable (weighting each group by the cell frequency, with a weight variable).
Otherwise, such data are generally best analyzed by methods for categorical data, where statistical
maodels are often expressed as models for the frequency variable, in the form of an R formula like
Freq ~

In any case. an observation in a data set in frequency form refers to all cases in the cell col-
lectively, and these cannot be identified individually. Data in case form can always be reduced to
frequency form, but the reverse is rarely possible. In Chapter 2. we identify a third format, table
Sorm, which is the R representation of a table like Table 1.2.

1.2.2 Frequency data vs. count data

In many cases the observations representing the classifications of events (or variables) are recorded
from operationally independent experimental units or individuals, typically a sample from some
population. The tabulated data may be called frequency data. The data in Table 1.1 and Table 1.2
are both examples of frequency data because each tabulated observation comes from a different
person.

However, if several events or variables are observed for the same units or individuals, those
events are not operationally independent, and it is useful to use the term count data in this situa-
tion. These terms (following Lindsey (1995)) are by no means standard, but the distinction is often
important, particularly in statistical models for categorical data.

For example, in a tabulation of the number of male children within families (Table 1.3, described
in Section 1.2.3 below), the number of male children in a given family would be a count variable,
taking values 0, 1, 2, .. .. The number of independent families with a given number of male children
is a frequency variable. Count data also arise when we tabulate a sequence of events over time or
under different circumstances in a number of individuals.
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Table 1.3: Number of Males in 6115 Saxony Families of Size 12

Males 0 1 2 3 e 5 6 7 8 9 10 11 12
Families | 3 24 104 286 670 1,033 1,343 1,112 829 478 181 45 7

1.2.3 Univariate, bivariate, and multivariate data

Another distinction concerns the number of variables: one, two, or (potentially) many shown in
a data set or table, or used in some analysis. Table 1.1 is an example of a bivariate (two-way)
contingency table and Table 1.2 classifies the observations by three variables. Yet, we will see later
that the Berkeley admissions data also recorded the department to which potential students applied
(giving a three-way table), and in the arthritis data, the age of subjects was also recorded.

Any contingency table (in frequency or table form) therefore records the marginal totals, summed
over all variables not represented in the table. For data in case form, this means simply ignoring (or
not recording) one or more variables; the “observations™ remain the same. Data in frequency form,
however. result in smaller tables when any variable is ignored: the “observations™ are the cells of
the contingency table. For example, in the Art hritis data, ignoring Sex gives the smaller 2 x 3
table for Treatment and Improved.

Treatment Improved Freq

1 Placebo None 29
2 Treated None 13
3 Placebo Some 7
4

Treated Some 7



> Placebo Marked !
€ Treated Marked 21

In the limiting case, only one table variable may be recorded or available, giving the categorical
equivalent of univariate data. For example, Table 1.3 gives data on the distribution of the number
of male children in families with 12 children (discussed further in Example 3.2). These data were
part of a large tabulation of the sex distribution of families in Saxony in the 19" century, but the
data in Table 1.3 have only one discrete classification variable, number of males. Without further
information, the only statistical questions concern the form of the distribution. We discuss methods
for fitting and graphing such discrete distributions in Chapter 3. The remaining chapters relate to
bivariate and multivariate data.

1.2.4 Explanatory vs. response variables

Most statistical models make a distinction between response variables (or dependent, or criterion
variables) and explanatory variables (or independent, or predictor variables).

In the standard (classical) linear models for regression and analysis of variance (ANOVA), for
instance, we treat one (or more) variables as responses, to be explained by the other, explanatory
variables. The explanatory variables may be quantitative or categorical (e.g., factors in R). This
affects only the details of how the model is specified or how coefficients are interpreted for 1m () or
glm (). In these classical models, the response variable (“treatment outcome,” for example), must
be considered quantitative, and the model attempts 1o describe how the mean of the distribution of
responses changes with the values or levels of the explanatory variables, such as age or gender.

When the response variable is categorical, however, the standard linear models do not apply,
because they assume a normal (Gaussian) distribution for the model residuals. For example, in
Table 1.2 the response variable is Improvement. and even if numerical scores were assigned to
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the categories “none,” “some.” “marked.” it may be unlikely that the assumptions of the classical
linear models could be met.

Hence, a categorical response variable generally requires analysis using methods for categorical
data, but categorical explanarory variables may be readily handled by either method.

The distinction between response and explanatory variables also becomes important in the use
of loglinear models for frequency tables (described in Chapter 9), where models can be specified in
a simpler way (as equivalent logit models) by focusing on the response variable.

1.3 Strategies for categorical data analysis

Data analysis typically begins with exploratory and graphical methods designed to expose features
of the data, followed by statistical analysis designed to summarize results, answer questions, and
draw conclusions. Statistical methods for the analysis of categorical data can be classified into two
broad categories: those concerned with hvpothesis testing per se versus those concerned with model
building.

1.3.1 Hypothesis testing approaches

In many studies, the questions of substantive interest translate readily into questions concerning
hypotheses about association between variables, a more general idea than that of correlation (linear
association) for quantitative variables. If a non-zero association exists, we may wish to characterize
the strength of the association numerically and understand the pattern or nature of the association.

For example. in Table 1.1, a main question is: “Is there evidence of gender-bias in admission
to graduate school?” Another way to frame this: “Are males more likely to be admitted?” These
questions can be expressed in terms of an association between gender and admission status in a
2 x 2 contingency table of applicants classified by these two variables. If there is evidence for
an association, we can assess its strength by a variety of measures, including the difference in
proportions admitted for men and women or the ratio of the odds of admission for men compared
to women, as described in Section 4.2.2.

Similarly, in Table 1.2, questions about the efficacy of the treatment for rheumatoid arthritis can

be answered in terms of hypotheses about the associations among the table variables: Treatment,
Sav and the Tmrravemant cateonriee  Althanoh the main cancern miocht he farieed an the
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overall association between Treatment and Improvement, one would also wish o know if
this association is the same for men and women. A stratified analysis (Section 4.3) controls for
the effects of background variables like Sex, tests for homogeneity of association, and helps to
determine if these associations are equal.

Questions involving tests of such hypotheses are answered most easily using a large variety
of specific statistical tests. often based on randomization arguments. These include the familiar
Pearson chi-squared test for two-way tables, the Cochran-Mantel-Haenszel test statistics, Fisher’s
exact test, and a wide range of measures of strength of association. These tests make minimal
assumptions, principally requiring that subjects or experimental units have been randomly assigned
to the categories of experimental factors. The hypothesis testing approach is illustrated in Chapters
4-6. though the emphasis is on graphical methods that help us to understand the nature of association
between variables.

EXAMPLE 1.1: Hair color and eye color
The data set HairEye below records data on the relationship between hair color and eye color
in a sample of nearly 600 students.
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Hair Color and Eye Color
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Figure 1.1: Graphical displays for the hair color and eye color data. Left: mosaic display: right:
correspondence analysis plot.

Eye
Hair Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 shsy 14 14
Blend 7 94 10 16

ThcsmndmdanMyﬂs(whhchisq.test()orassocstats())gWesaPemsonxzofl3&3
with nine degrees of freedom. indicating substantial departure from independence. Among the mea-
sures of strength of association, Cramer’s V, V' = \/\'ng min(r — 1.c — 1) = 0.279, indicates a
substantial relationship between hair and eye color.”

X*2 df p(> X*2)

Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0
Phi-Coefficient : NA

Contingency Coeff.: D0.435

Cramer's V ¥ 0.279

The further (and perhaps more interesting question) is how do we understand the nature of this
association between hair and eye color? Two graphical methods related to the hypothesis testing
approach are shown in Figure 1.1.



The left panel of Figure 1.1 is a mosaic display (Chapter 5), constructed so that the size of each
rectangle is proportional to the observed cell frequency. The shading reflects the cell contribution
to the y? statistic—shades of blue when the observed frequency is substantially greater than the
expected frequency under independence, shades of red when the observed frequency is substantially
less, as shown in the legend.

The right panel of this figure shows the results of a correspondence analysis (Chapter 6), where
the deviations of the hair color and eye color points from the origin accounts for as much of the y?
as possible in two dimensions.

"Cramer’s V varies from 0 (no association) to | (perfect association).
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‘We observe that both the hair colors and the eye colors are ordered from dark to light in the
mosaic display and along Dimension 1 in the correspondence analysis plot. The deviations between
observed and expected frequencies have an opposite-corner pattern in the mosaic display. except for
the combination of red hair and green eyes, which also stand out as the largest values on Dimension
2 in the Correspondence analysis plot. Displays such as these provide a means to understand how
the variables are related. JAN

1.3.2 Model building approaches

Model-based methods provide tests of equivalent hypotheses about associations, but offer additional
advantages (at the cost of additional assumptions) not provided by the simpler hypotheses-testing
approaches. Among these advantages, model-based methods provide estimates, standard errors and
confidence intervals for parameters, and the ability to obtain predicted (fitted/expected) values with
associated measures of precision.

We illustrate this approach here for a dichotomous response variable, where it is often convenient
to construct a model relating a function of the probability, 7, of one event to a linear combination
of the explanatory variables. Logistic regression uses the logit function,

logit(m) = log, (l fﬁ_) .

which may be interpreted as the log odds of the given event. A linear logistic model can then be
expressed as

logit(7) = o + 11 + foxa+ ...

Statistical inferences from model-based methods provide tests of hypotheses for the effects of
the predictors, iy, x2. . . ., but they also provide estimates of parameters in the model, 7. 2, ... and
associated confidence intervals. Standard modeling tools allow us to graphically display the fitted
response surface (with confidence or prediction intervals) and even to extrapolate these predictions
beyond the given data. A particular advantage of the logit representation in the logistic regression
model is that estimates of odds ratios (Section 4.2.2) may be obtained directly from the parameter
estimates.

EXAMPLE 1.2: Space shuttle disaster

To illustrate the model-based approach, the graph in Figure 1.2 is based on a logistic regression
model predicting the probability of a failure in one of the O-ring seals used in the 24 NASA space
shuttles prior to the disastrous launch of the Challenger in January, 1986, The explanatory variable
is the ambient temperature (in Fahrenheit) at the time of the flight. The sad story behind these data,
and the lessons to be learned for graphical data display, are related in Example 1.10.

Here, we simply note that the fitted model, shown by the solid line in Figure 1.2, corresponds to
the prediction equation (with standard errors shown in parentheses),

logit(Failure) = 5.09 — 0.116 Temperature
(3.06)  (0.047)

A hypothesis test that failure probability is unassociated with temperature is equivalent to the test
that the coefficient for temperature in this model equals 0; this test has a p-value of 0.014, convincing
evidence for rejection.

The parameter estimate for temperature, —0.116, however, gives more information. Each 1°
increase in temperature decreases the log odds of failure by 0.116, with 95% confidence interval
[~0.208, —0.0235]. The equivalent odds ratio is exp(—0.116) = 0.891 [0.812,0.977]. Equiva-
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3.18, more than tripling the odds of a failure.
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NASA Space Shuttle O-Ring Failures

1.0

Estimated failure probability

Temperature (degrees F)

Figure 1.2: Space shuttle O-ring failure, observed and predicted probabilities. The dotted vertical
line at 317 shows the prediction for the launch of the Challenger.

When the Challenger was launched, the temperature was only 31°. The shaded region in Fig-
ure 1.2 shows 95% prediction intervals for failure probability. All previous shuttles (shown by the
points in the figure) had been launched at much warmer temperatures, so the prediction interval
(the dashed vertical line) at 31° represents a considerable extrapolation beyond the available data.
Nonetheless, the model building approach does provide such predictions along with measures of
their uncertainty. Figure 1.2 is a graph that might have saved lives.

A

EXAMPLE 1.3: Donner Party

In April-May of 1846 (three years before the California gold rush), the Donner and Reed fam-
ilies set out for California from the American Mid-west in a wagon train to seek a new life and
perhaps their fortune in the new American frontier. By mid-July. a large group had reached a site
in present-day Wyoming; George Donner was elected to lead what was to be called the “*Donner
Party.” which eventually numbered 87 people in 23 wagons, along with their oxen, cattle. horses,
and worldly possessions,

They were determined to reach California as quickly as possible. Lansford Hastings, a self-
proclaimed trailblazer (retrospectively, of dubious distinction), proposed that the party follow him
through a shorter path through the Wasatch Mountains. Their choice of “Hastings’s Cutoff” proved
disastrous: Hastings had never actually crossed that route himself, and the winter of of 1846 was to
be one of the worst on record.

In October, 1846, heavy snow stranded them in the eastern Sierra Nevada, just to the east of a
pass that bears their name today. The party made numerous attempts to seek rescue, most turned
back by blizzard conditions. Relief parties in March—April 1847 rescued 40, but discovered grisly
evidence that those who survived had cannibalized those who died.

Here we briefly examine how statistical models and graphical evidence can shed light on the
question of who survived in the Donner party.

Figure 1.3 is an example of what we call a dara-centric, model-based graph of a discrete (binary)
outcome: lived (1) versus died (0). That is, it shows both the data and a statistical summary based
on a fitted statistical model. The statistical model provides a smoothing of the discrete data.

The jittered points at the top and bottom of the graph show survival in relation to age of the
person. You can see that there were more people who survived among the young, and more who
died among the old. The blue curve in the plot shows the fitted probability of survival from a

Copyrighted Material



Copyrighted Material
12 1. Introduction

1004 *,30.0%00 *ells o %73% o L0 - .,

078~
%ow-
D25+
ooo- B 3.2 - slefe o o o . S |
' ' ' .
o 20 40 80
age

Figure 1.3: Donner party data, showing the relationship between age and survival. The blue curve
and confidence band give the predicted probability of survival from a linear logistic regression
model.

linear logistic regression model for these data with a 95% confidence band for the predictions. The
prediction equation for this model can be given as:

logit(survived) = 0.868 — 0.0353 age
(0.372)  (0.015)

The equation above implies that the log odds of survival decreases by (.0352 with each addi-
tional year of age or by 10 x 0.0352 = (.352 for an additional decade. Another way to say this
is that the odds of survival is multiplied by exp(0.353) = .702 with each 10 years of age, a 30%
decrease.

Of course. these visual and statistical summaries depend on the validity of the fitted model. For
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Figure 1.4: Donner party data, showing other model-based smoothers for the relationship between
age and survival. Left: using a natural spline: right: using a non-parametric loess smoother.
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